

Land use change modelling in CAPRI based on fresh empirical evidence

Peter Witzke, EuroCARE Torbjoern Jansson (SLU)

Introduction

- Key components of CAPRI
 - Regional (NLP) programming models for supply side of European regions
 - ~60 activities, some physical constraints, nonlinear cost => smooth response
 - Global market model (~ 40 regions) iterating with supply models
 - Specific projection tools for baseline
 - Infrastructure for handling outputs of markets, activities, environment
- Land use effects are receiving increased attention
 - For biodiversity questions
 - For carbon accounting. Therefore we need:
 - Full area coverage
 - Land transitions

Land use specification for modelling

Trustee re-specification Currently three level hierarchy Total country area Potential agricultural land Agriculturally used Unused **Forest** Gras Arable crops Perm crops Artificial Other land potential Grasland Cropland Perm Gras, Crop Arab Perm Gras, Gras, Arab Crop Gras, Crop(1) Crop(1) Crop(n) Crop(m) intens. #1 extens. extens. intens.

#n

From land owner to land use transitions

Problem:

- CAPRI "levl" classes (of land owner decision makers) do not match perfectly to UNFCCC "land use"
- Some mapping is needed:

Static land owner problem

- Problem: allocate total land to types i receiving specific rents r_i
- The technology for preparing or maintaining the capacity of land is unknown
- We approximate the unknown cost function with a quadratic function

$$\min \sum_{i} LEVL_{i}r_{i} - \sum_{i} LEVL_{i}c_{i} - \frac{1}{2}\sum_{ij} LEVL_{i}D_{ij}LEVL_{j}$$

$$s.t.$$

$$\sum_{i} LEVL_{i} = \text{constant}$$

- An infinite number of (gross) land transitions is possible to move from one allocation of land types to the next one
- No explicit (dynamic) conversion costs => the choice of particular land transitions (among the infinity of feasible ones) will be considered a stochastic process

Dynamic land use change process

- Total land use of each type i are given by the economic model
- We must convert economic land LEVL_i to GHG-accounting land LU_k
- Historical data on *gross transitions* T_{jk} show a rather stable pattern
- We use historical transition matrix as (Bayesian) prior distribution
- We choose the transition matrix that maximizes density and satisfies land use
- Gamma prior density (p) gives good results (only positive outcomes allowed)

$$\max \prod_{jk} p_{jk}(T_{jk})$$
 $s.t.$
 $LU_k = \sum_i share_{ki} LEVL_i$
 $LU_k = \sum_j T_{jk}$
 $LU_j^{initial} = \sum_k T_{jk}$

Parameter estimation based in historical data and WP2.3 results

- Elasticities of WP2.3 aggregated to CAPRI-regions (to Nuts2 from grid)
- Problem: Specify land supply model to minimize deviations from WP2.3 results
- Convex quadratic, linearly constrained model...
 - 1. Can fit observed land use and land rents exactly
 - Can get "close" to a point elasticity matrix (as constraints and curvature permit)
- "Close" is measured by weighted square deviations
 - Diagonal has higher weight
 - Off-diagonal has lower weight
 - Residual elements have lowest weight
- (Transitions calibrated by setting "prior mode" = "observation")

Results on prior and posterior elasticities

To get "priors" for CAPRI (below), elasticities estimated by Jean Saveur Ay were

- 1) Squeezed into a [0,1] range by a cut off rule plus shrinking formula
- 2) Aggregated without weighting from km2 results to NUTS3 level and then NUTS2
- 3) Ignoring the warning against use of elasticities for urban land
- 4) And recalculating the (numeraire) Other land elasticity based on assumptions

		Pasture	Forest	Artificial	Other	ArabCrops	PermCrops
prior	Pasture	0.09	-0.13	-0.15	0.27	-0.08	-0.01
prior	Forest	-0.02	0.14	-0.23	0.19	-0.07	-0.01
prior	Artificial	0.03	-0.14	0.88	-0.82	0.05	-0.01
prior	Other	-0.02	0.03	0.12	-0.16	0.04	-0.01
prior	ArabCrops	0.01	-0.17	-0.17	-0.39	0.55	-0.01
prior	PermCrops	0.03	-0.01	-0.07	0.11	-0.07	0.05
fitted	Pasture	0.06	-0.01	0.00	-0.05	0.00	0.00
fitted	Forest	-0.03	0.13	-0.03	0.03	-0.10	0.00
fitted	Artificial	0.03	-0.16	0.88	-0.21	0.04	0.00
fitted	Other	-0.07	0.01	-0.01	0.12	-0.04	0.00
fitted	ArabCrops	0.01	-0.23	0.02	-0.34	0.47	0.00
fitted	PermCrops	0.03	-0.01	-0.08	0.08	-0.07	0.05

Example: IR01 = Border, Midland, Western

- Strong changes for other land elasticity where variance has been set high
- Other elasticities are closer top prior

Scenario with +200 Euro support for pasture and meadows

- In IR01 (Border, Midlands, Western) land owners would expand pastures (agricultural grassland), mostly at the expense of "other land".
 - As arable and permanent crops had low cross elasticity to pasture rents
- Effect on UNFCCC grassland is moderated as a part of pasture expansion comes from the "shrubland" (so takes place within grassland)
- Expansion partly at the expense of wetland (part of other land) problematic?

	1 1		D-4	Observator Claus	Ol (0/)	Ol (Ll)
	Levl	LU	Reference	Simulation	Change (%)	Change (kha)
Forest	Χ	Χ	328	325	-0,9%	-3
Artificial	Х	Χ	24	24	0,9%	0
Cropland		Χ	165	165	0,2%	0
ArableCrops	X		164	165	0,2%	0
PermanentCrops	X		0	0	0,0%	0
Pasture	х		1561	1590	1,8%	29
InlandWaters	X		116	116	0,0%	0
Other	Х		1119	1093	-2,3%	-26
Wetland		Χ	672	660	-1,9%	-13
Grassland		X	1929	1949	1,0%	20
Residual		Χ	195	190	-2,3%	-5

Unfinished business

- Full implementation in CAPRI
 - Adjustments to new parameters, variables in calibration, simulation, post model reporting
- Reconsidering / fine tuning details of estimation approach
 - Distributions for elasticity information (Gamma for diagonal?)
 - Use of variance information from multinomial logit estimation in CAPRI
 - Introduction of prior information at grid level vs NUTS2 level
 - Constraint for second order condition
 - Handling of missing / suspicious data
- Completion for countries not covered (Scandinavia, NMS...) or search for plausible mapping rules
- Adjustment of elasticities to baseline changes in land allocation
 - Special elasticities have been provided, more info on regressors might be obtained

Outlook for longer run

- Carbon accounting to be moved from post model to during model
- Permits GHG mitigation scenarios integrating
 - Mitigation measures targeting non-CO2 emissions from livestock production and crop production
 - Carbon effects in LULUCF sector
- For global climate effects (ILUC)
 - Completion on global database on land transitions
 - Modelling of transitions may rely on same concept (unknown statistical dynamic process) as in EU programming models
 - Permits scenarios with global carbon price policies and mitigation in several world regions